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Abstract. In recent years, estimating the locations of images has received a lot of 
attention, which plays a role in application scenarios for large geo-tagged image 
corpora. So, as to images which are not geographically tagged, we could estimate 
their locations with the help of the large geo-tagged image set by visual mining 
based approach. In this paper, we propose a global feature clustering and local 
feature refinement based image location estimation approach. Firstly, global feature 
clustering is utilized. We further treat each cluster as a single observation. Next we 
mine the relationship of each image cluster and locations offline. By cluster 
selection online, several refined locations likely to be related to an input image are 
pre-selected. Secondly, we localize the input image by local feature matching 
which utilizes the “SIFT” descriptor extracted from the refined images. In this 
process, “spatial layers of visual word” (SLW) is built as an extension of the 
unorganized bag-of-words image representation. Experiments show the 
effectiveness of our proposed approach. 
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1 Introduction 

Given a query image, in this paper, our goal is to estimate its location by mining image 
content. Automatic location estimation for an image is possible with the help of the large 
scale geo-tagged photos shared by millions of worldwide users. State-of-the-art large 
scale image retrieval systems have relied on local SIFT descriptors [5]. Traditionally, a 
visual vocabulary is trained by clustering a large number of local feature descriptors. The 
exemplar descriptor of each cluster is called a visual word, which is then indexed by an 
integer. However, experimental results of existing work show that the commonly 
generated visual words are still not as expressive as the text words. Spatial information of 
visual words should be exploited for better performance. Moreover, we find that although 
purely using global features is not so efficient, some images can be recognized well via 
global feature matching. 

Therefore, we propose image visual mining based image geographic location 
estimation approach. In our work, firstly, the clusters are mined to generate refined 
locations for an input image using global features. Secondly, we exploit sufficient 
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information by mining spatial information of visual words. ‘‘Spatial layers of visual 
word’’ (SLW) is proposed, which plays a significant role for image location estimation. 
SLW is generated by involving one visual word and its spatial relationships with its 
neighbor visual words. Unlike what is introduced in [11], their “spatial pyramid” is 
generated by partitioning an image into increasingly fine sub-regions and computing 
histograms of local features found inside each sub-region. We go deep into each word 
whose multiple neighbors are taken into consideration in sequence. 

The contributions of this paper are as follows: (1) Refined locations of an input 
image are generated via cluster selection based on cluster location estimation. (2) 
Spatial layer matching is proposed to improve the estimation accuracy for an input 
image. (3) Useful local features selection is utilized, on the basis of which our 
proposed SLW shows better results. 

The rest of the paper is organized as follows: Firstly, related works on location 
estimation are reviewed. Secondly, we provide the system overview. Finally, we give 
a description on our approach in section 4 and 5. Experiments containing the 
comparison with the recently popular method and parameters discussions are shown 
in Section 6. In Section 7, the conclusion is drawn. 

2 Related Work 

Many methods are intended to estimate the geographic location of images. An 
approach which is based purely on visual features is presented by Hays and Efros in 
[9]. They characterize each image using a number of image features. Then they 
compute the distances on different feature spaces and use the k-nearest-neighbor 
technique to estimate the GPS of an input image. Finally, cluster with the highest 
cardinality is selected and its GPS is assigned as GPS of the input image 

Bag-of-words image representation has been utilized for many multimedia and 
vision problems. Li et al. utilize multi-class SVM classifiers using bag-of-words for 
large scale image location estimation [2]. They also show that through adding textual 
features such as tags, they can improve the performance. Han et al. propose an object-
based image retrieval algorithm. They combine a novel feature descriptor based on 
context-preserving bag-of-words and a two-stage re-ranking technique to measure the 
similarity between the query image and each image in the dataset [16]. Zhang et al. 
propose a spatial coding based image retrieval approach by building the contextual 
visual vocabulary [1]. The spatial coding encodes the relative positions between each 
pair of features in an image. They focus on user traces across the micro-blogging 
platform Twitter. Chum et al. also propose an approach for estimating the location of 
the image by using local feature matching [10]. And user interaction is required to 
confine the locations of the input image to really small ranges. In [17,18], the GPS 
information is served as an important clue to improve tag recommendation 
performances for social user shared photos. 

Researchers have proposed many works e.g. visual synonyms [7, 14-15], embed 
geometry constraint [3, 12-13], etc. Spatial information can reinforce the 
discriminative power of single word. Wu et al. [12] employed the detector of 
Maximally Stable Extremal Regions (MSER) to bundle point features (SIFT) into 
groups instead of taking all of them individually. Moreover, the database can be 
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constructed with a 3D model [6]. Liu et al. propose an approach which is capable of 
providing a complete set of more accurate parameters about the scene geo—including 
the actual locations of both the mobile user and perhaps more importantly the 
captured scene along with the viewing direction [6]. They firstly perform joint geo-
visual clustering in the cloud to generate scene clusters, with each scene represented 
by a 3D model. The 3D scene models are then indexed using a visual vocabulary tree 
structure. 

3 System Overview 

The system of our proposed approach is shown in Figure 1. It consists of two systems: 
the online system and the offline system. 

 

Fig. 1. Block diagram of the location estimation system 
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Firstly, we obtain refined locations related to an input image offline. In this 
process, global feature clustering is utilized. We further treat each cluster as a single 
observation to mine the relationship of each image cluster and locations. Then several 
refined locations likely to be related to an input image are pre-selected by cluster 
selection in our online system. Secondly, we estimate image GPS by local feature 
refinement by making full use of the images in refined locations. In our work, “spatial 
layers of word” (SLW) is proposed as an extension of bag-of-words image 
representation. SLWs for dataset images are built offline. We estimate the location of 
an input image by spatial layer matching.  

4 Refined Locations Generation 

Generating refined locations is the first step of our framework in our offline system. 
In this section, we introduce how to generate image clusters, and how to select the 
refined location candidates. 

4.1 Grouping Images into Clusters 

We propose to cluster the dataset images using their global features, such as color 
feature and texture feature. Similar to our previous work [4], color moment (CM) and 
hierarchical wavelet packet descriptor (HWVP) [19] are utilized here. The global 
feature clustering is carried out on the 215d vector including 45d CM and 170d 
HWVP. K-means clustering is utilized to divide dataset images into M  clusters 

( )i , ,C i 1 M= … . In this paper, we set M  to be 50, according to the suggestions  

in [4]. 

4.2 Cluster Location Estimation 

Due to the fact that our dataset images are geo-tagged, each image has one geo-tag. 
The geo-tag indicates the taken place of the input image. In our offline system, before 
the cluster selection, we first mine the relationship of clusters and locations. Our 
approach consists of the following steps: 

Assume that the cluster nC  has g  images ( ), ,njI j 1 g= … . Firstly, for each 

image in the cluster nC , we gather its R  most similar images across the entire dataset 

images based on the similarities of the global visual features (We will discuss the 
situation that using local features instead of global features in our experiments.). We 
select the top ranked K R g= ×  neighboring images ( ), ,KiI i 1= … .  

Secondly, through analysis of the K  geo-tagged neighboring images, we can 
predict the probable locations for the cluster nC . We divide the geo-tags of the K  

images into L (ܭ≥ܮ) sets according to their true locations. Each set corresponds to a 
unique location. Let ( ), ,iD i 1 L= … denote the L sets. By ranking the L locations 

according their frequencies (i.e. the numbers of images belonging to the locations) in 
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the descending orders, we can get the probabilities that the cluster Cn belonging to.  
As shown in Figure 2, among the K neighbor images, , , , , ,1 2 3 4 6 K 1I I I I I I −  belong to 

the same location 1D . So, the score (frequency) of location 1D  is 6. We select %V  

of the L  locations as location candidates related to the cluster.  
 

 

Fig. 2. Finding neighboring images for a cluster 

Finally, we select candidate clusters for an input image in our online system. Let 

xF  denote the 215d global features of the input image. The candidate cluster 

selection is based on the distances between xF  and M  centers ( )i , ,C i 1 M= … . In 

this paper, the top ranked fifteen clusters are selected, i.e. g=15. Based on the found 
neighboring images for each cluster we can get the refined locations. 

5 Local Feature Refinement 

After the global feature clustering and refined location generation, we can determine 
the candidate locations for the input image. In order to improve image location 
estimation performances, we further conduct local feature refinement. In this section, 
to capture some unique and representative details in images, we utilize SIFT to carry 
out spatial layer matching. In our work, we first quantize the SIFT points into visual 
words by using a hierarchical K-means clustering approach [4].  

5.1 Useful Features Selection 

Given a query image, its visual words have different discrimination power for 
location estimation. Some of them are useful for location estimation, and some of 
them may be noise. To mine useful features, we compute the score of the visual word 
while considering the frequency and the weight of word by employing a  
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term-frequency inverse-document-frequency (tf-idf) weighting scheme. For an image, 
the score of each visual word is computed as follows: 

logw
w

w ww

f N
S

f n
= ×
∑

                        (1) 

where wf  is the frequency of w-th visual word in the image, wn  is the number of 

images containing the w-th visual word. In Figure 3 (a) the raw SIFT points are 
shown, and in Figure 3 (b) the useful feature are kept. We find that by useful feature 
mining many non-discriminative visual words are removed. 

        
               (a) All features                    (b) useful features 

Fig. 3. (a)All features of an image and (b) the useful features 

5.2 Spatial Layer Matching 

After the above-mentioned steps, each refined image is represented by a set of useful 
visual words. In this section, we build SLW for each useful visual word of the refined 
images, which is generated by integrating a visual word and its neighboring visual 
words. In our feature extraction, we represent each SIFT point by a 128-D descriptor 
vector and a 4-dimensional DoG key-point detector vector (x, y, scale, and 
orientation). In this part, the coordinates (x, y) are utilized to calculate the distance of 
visual words, according to which we build SLW. 

 
                 (a)               (b)               (c) 

Fig. 4. Spatial layers of visual word (SLW), (a) local region, (b) the neighboring visual words 
around a visual word, (c) spatial layer representation for a visual word 

Therefore, from a visual word ݓ, we build its spatial layers as shown in Figure 4. The 
enlarged location region for Figure 4 (a) is as shown in Figure 4(b), its spatial layer 
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representation for the visual word is shown in Figure 4(c). Let ܵ(ݓ)ܹܮ to record both the 
word and its neighbor visual words. We define each layer of ܵ(ݓ)ܹܮ as: 

( ) ( ){ },
k

n n n 0
SLW w w NW

=
=                       (2) 

where NW is neighbors of word ݓ, and n  is one of the neighbors of ݓ. k  is the 

number of layers. ( )0SLW w denotes the first layer of ݓ, which only contains the 

visual word itself. The second layer is composed of the visual word and its nearest 
neighbor. The third layer consists of the visual word, and its two nearest neighbors, 
and so on. During our experiments, we build 3 layers for each visual word. The value 
of n  will be discussed in section 6.3. 

Then, we score for each image of refined locations like this: For each visual word 

mq of a query image, we build its ( )mSLW q . For a refined image r, SLW of its any 

useful visual word g is denoted as ( )SLW g . If ( )n mSLW q is found in ( )SLW g , the 

score of refined image r (denoted as rScore ) is accumulated by one. We assume that 

query image has Z  visual words. Then, we iterate over all the visual words of the 
query image to calculate the score of the image as follows:  

Z

r m
m 1

Score f
=

=∑                            (3) 

where fm is an indicator, it records whether the visual word qm belonging to image r.  

( )
1, ( ) ( ),

, , , ,
, ( ),

n m

m
n m

if SLW q SLW g g r
f n 0 1 k

0 if SLW q SLW g g r

∈ ∈⎧⎪= =⎨ ∉ ∈⎪⎩
…

            

(4) 

So, we obtain scores of all candidate images. Then we rank all the candidate 
images according to their scores. At last, we use K-NN based approach to estimate the 
location of input image. 

6 Experimentation 

In order to test the performance of the proposed GPS estimation approach, 
comparisons are made with IM2GPS [9], CS [4] and spatial coding based approach 
(denoted as SC) [8]. Experiments are carried out on two datasets: OxBuild and GOLD 
[4]. The location numbers of OxBuild is 11. 100 images are selected randomly from 
the whole dataset as the test set, while the rest is served as training set. GOLD 
contains more than 3.3 million images together with their geo-tags. 80 travel spots are 
randomly selected for testing. The test dataset for the 80 sites contains 5000 images. 

6.1 Performance Evaluation 

For an input image, if the estimated location is exact with its ground-truth location, it 
is correctly estimated, otherwise falsely estimated. Assuming that the recognition rate 
of the i-th spot (RRi) is the correct, then average recognition rate (AR) is utilized to 
evaluate the performance which is given as follows: 

G

i
i 1

1
AR RR

G =

= ∑                                 (5) 
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RR 100 i 1

NI
= × ∈ …                         (6) 

where iNC  is the correct estimated image number, iNI  is the test image number. 

G  is the number of locations, 11 and 80 for OxBuild and GOLD respectively. 

6.2 Performance Comparison 

As for IM2GPS, Spatial Coding (SC) and Cosine Similarity (CS), we choose the best 
parameters provided in [9], [8] and [4]. From Figure 5 we find that our method SLW 
outperforms the other methods. The results of IM2GPS in the two test datasets are 
39.67% and 53.06%. The results of spatial coding (SC) in the two test datasets are 
59.48% and 70.39%, while the results of Cosine Similarity (CS) in the two test 
datasets are 89.27% and 84.86% respectively. Those of ours for the two datasets are 
90.15% and 86.03% respectively. The performance of CS is better than IM2GPS and 
SC. We can conclude that both global and local visual features are contributive in 
image location estimation. Our SLW further gets some improvement over our 
previous work CS [4]. This shows that the spatial layer information information is 
worth exploiting for improving the image location estimation performance.  

 

Fig. 5. ARs of IM2GPS, SC, CS and SLW 

6.3 Discussion 

The performance of our approach is influenced by several main factors. Hereinafter, 
we discuss their impacts respectively by carrying out a set of experiments. 

6.3.1 The Impact of Using Global Features or Local Features 
In our experiments, when mining a cluster, the global features are utilized. For each 
image in a cluster, we gather its R  most similar images across the entire training set 
based on the similarity of the global visual features. We conduct an experiment that in 
this process, local feature is used instead of global features. We extract local features 
scale-invariant feature transform (SIFT). A SIFT feature consists of a 128-D 
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descriptor vector and a 4-dimensional DoG key-point detector vector (x, y, scale, and 
orientation). We can see from Table 1 that performance improvement is not obvious. 
The reason is that the clusters are mined for location estimation. We further obtain 
refined locations of input image via cluster selection. After this process, we just want 
to generate refined locations of the input image to narrow the scope of retrieval. 
Moreover, the time cost of local features is certainly more. So, global features are 
utilized in our work. 

Table 1. Average Recognition Rates (%) of using global features and local feature in cluster 
mining 

Dataset Global features Local feature 
OxBuild 90.15% 90.17% 
GOLD 86.03% 86.29% 

6.3.2 The Impact of Using Useful Features or All Features 
In the part of local feature refinement, salient features selection of images is carried 
out. For different images, their visual words have different weights during location 
estimation. The performances of using all features and useful features are discussed 
here. It can be seen from Table 2 that the performance of using all features is interior 
to using useful features. So selecting salient words is of significance for image 
retrieval. 

Table 2. Average Recognition Rates (%) of using all features and useful features 

Dataset All features Useful features 

OxBuild 89.77% 90.15% 

GOLD 85.51% 86.03% 

6.3.3 The Impact of Number of Layers in SLW n  
In the part of spatial layer matching, we build spatial layers of visual words for each 
useful word of those refined images. In our experiments, we build n  layers for each 
visual word. The impact of layer number n  to location estimation is discussed here. 
The AR values of SLW on GOLD are 70.56%, 86.03%, 86.97% and 63.44% 
respectively when ݊={1,3,5,7}. It can be seen from Table 3 that with the increase of ݊ 
the AR is first increasing and then into decline. When ݊ is in the range of [3, 5], better 
performance can be achieved. If the distance of two visual words is larger than the 
proper value, their correlation is obviously weaker. During our experiments, ݊ is set 
to be 3. 

Table 3. Average Recognition Rates (%) of different values of n  

Dataset n=1 n=3 n=5 n=7 
OxBuild 76.82% 90.15% 91.21% 70.58% 
GOLD 70.56% 86.03% 86.97% 63.44% 
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6.3.4 The Impact of Percentage of Cluster Location Candidates V  
In cluster location estimation, for a cluster, we obtain the ranking list of L  locations. 
We select ܸ percent of the L  locations as location candidates related to the cluster. 
Here, we discuss the impact of ܸ to image GPS estimation performances on both 
GOLD and OxBuild as shown in Figure 6. The AR values of SLW on GOLD is 
39.41%, 60.39%, 75.19%, 86.03%, 86.73% and 61.32% with the increase of ܸ . ܸis 
set 60 in our experiments. If the

 
ܸ is too large, more unrelated locations will be taken 

into consideration. If the ܸ is too small, the related location will be cut out, which has 
a worse impact on performance. It can be seen from Figure 6 that with the increase of ܸ, the AR is first increasing and then into decline. 
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Fig. 6. Impact of cluster location candidates V  

7 Conclusion 

In this paper, we present a method for image location estimation. In our work, first 
the images are clustered relying on global features. And each cluster is seen as a 
single observation so as to mine the relationship among those clusters and 
locations. Then refined locations are further selected via a cluster selection 
strategy online. Afterwards, spatial information of visual words is mined. We build 
spatial layers of visual words (SLW) for further matching, which are generated by 
involving visual words and the neighboring visual words. The final location 
estimation is yielded via an online spatial layer matching process. Experiments 
show that our proposed SLW has better results.  
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